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Abstract
We develop a matrix model to describe bilayered quantum Hall fluids for a
series of filling factors. Considering two coupling layers, and starting from a
corresponding action, we construct its vacuum configuration at ν = qiK

−1
ij qj ,

where Kij is a 2×2 matrix and qi is a vector. Our model allows us to reproduce
several well-known wavefunctions. We show that the wavefunction �(m,m,n)

constructed years ago by Yoshioka, MacDonald and Girvin for the fractional
quantum Hall effect at filling factor 2

m+n
and in particular �(3,3,1) at filling 1

2
can be obtained from our vacuum configuration. The unpolarized Halperin
wavefunction and especially that for the fractional quantum Hall state at filling
factor 2

5 can also be recovered from our approach. Generalization to more than
two layers is straightforward.

PACS number: 74.43.Cd

1. Introduction

The quantum Hall (QH) effect has bred many interesting theories. Indeed, Laughlin’s
wavefunctions [1] are good wavefunctions for describing the fractional quantum Hall effect
(FQHE)[2] at filling factor ν = 1

m
, where m is an odd integer. For other filling factors several

attempts have been suggested to extend Laughlin’s theory by adopting different approaches
and assumptions. In particular, Halperin [3] proposed a family of generalized Laughlin
wavefunctions that could incorporate reversed spins. In fact a candidate for an unpolarized
wavefunction at filling factor 2

5 was given. Subsequently, Yoshioka et al [4] generalized the
Laughlin wavefunctions to those of the bilayered QH systems and derived those corresponding
to the ν = 1

2 state. Moreover, other theories have been elaborated and have led to the
understanding of the observed values of ν, in particular ν = 5

2 [5] as well as others [6].
The first experimental indications of an unpolarized ground-state spin configuration in

the FQHE came with the discovery of the ν = 5
2 state [7] and later the ν = 4

3 state [8].
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More compelling evidence for novel spin phenomena in the FQHE was subsequently reported
[9]. On the other hand, it was shown experimentally that multi-layer systems also exhibit the
FQHE [10]. In fact, several filling factors have been observed, for instance the ν = 1

2 state
[11] and ν = 9

2 , 11
2 , . . . [12].

Recently, Susskind [13] proposed a novel method of investigating the FQHE. He claimed
that the non-commutative Chern–Simons theory (NCCS) at level k is exactly equivalent to
Laughlin’s theory at the filling factor νS = 1

k
. He formulated his approach as a matrix

theory similar to that describing D0-branes in string theory. However, Susskind’s theory is an
alternative approach to the FQHE, which so far has not produced anything new but has just
recovered the Laughlin approach by adopting a new formalism. Nevertheless it remains a new
way of thinking and is worth studying in the hope that it will bring new results in the future.

Although the proposed matrix model seems to reproduce the basic features of the Laughlin
QH droplets, still some problems remain to be solved. Indeed, Susskind’s approach is valid
only for infinite matrices and also shows an anomaly for k = 0. To solve these problems,
Polychronakos [14] introduced a boundary term to the Susskind matrix model. He proposed
a finite matrix model as a regularized version of the NCCS theory. It allowed him to find a
quantum correction to νS, where k is shifted to k + 1 and the filling factor became νPS = 1

k+1 .
As another consequence, he pointed out that his matrix model is equivalent to the Calogero
model [15].

Sometimes later, observing that the Laughlin wavefunctions can be mapped onto many-
body wavefunctions of the harmonic oscillator, Hellerman and Van Raamsdonk [16] built a
complete minimal basis of wavefunctions of the theory at an arbitrary level k and rank M, see
also [17]. Other investigations about the relation between NCCS and Laughlin fluids can be
found in [18, 19]. Subsequently, the Susskind model and its regularized version introduced by
Polychronakos were extended to FQH states that are not of Laughlin type: a multicomponent
Chern–Simons approach was introduced [20] and another proposal based on the Haldane
hierarchy [21] was developed [22, 23].

Despite the progress in the study of the FQH fluids in the framework of NCCS matrix
model, several open questions remain which have not been addressed so far. One of these
questions concerns the wavefunctions that are not of Laughlin type. In fact there are many
wavefunctions that have been constructed years ago, e.g. by Yoshioka et al, Halperin and
others, but cannot be recovered by what is developed so far.

In what follows we propose a matrix model to investigate the possibility of obtaining two
of those wavefunctions. This can be done by extending the Susskind–Polychronakos model
to deal with the QH fluids at the filling factor [24]

ν = qiK
−1
ij qj (1)

where Kij is an N × N matrix and qi is a vector. The basic idea is to consider several
Susskind–Polychronakos systems, let us say M systems, with an interaction between them
and suppose that all systems possess the same number of particles. In the QHE language,
this picture is equivalent to considering multi-layered systems. Without loss of generality, we
fix M = 2, but as we will see later our analysis can directly be extended to the generic case
M � 3.

We start by writing down an appropriate action as a sum of two terms of the free and the
interacting parts. Subsequently, we derive the corresponding Hamiltonian, which of course
contains an interaction. Using a unitary transformation, we show that this Hamiltonian can be
transformed to a diagonalized one. Next, we determine the vacuum configuration that allows
us to recover two different states. Indeed, we show that how the Yoshioka–MacDonald–Girvin
wavefunctions at the filling factor ν = 2

m+n
can be obtained from our model and in particular
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that describing the FQHE at ν = 1
2 . Moreover, the unpolarized Halperin wavefunctions will

be derived and especially those corresponding to the ν = 2
5 state.

In section 2 we recall briefly the NCCS matrix model description of the Laughlin fluid.
In section 3, we propose an action describing a system of two layers, we derive the Gauss
law constraint as well as the equations of motion for the different variables. A quantum
mechanical analysis will be the subject of the next section, where we develop a Hamiltonian
that corresponds to the system under consideration. Under rotation, we define a set of matrices
of harmonic-oscillator operators to diagonalize the system. In section 5, we build the vacuum
configuration that satisfies the constraint. A link with literature will be discussed in the last
section where the two wavefunctions mentioned above will be recovered. We conclude our
paper by raising some questions to be investigated in the forthcoming works.

2. Chern–Simons matrix model

Starting from the matrix formulation of a two-dimensional system with a large number of
electrons in the presence of a perpendicular magnetic field B, Susskind [13] showed that the
resulting effective theory is a non-commutative U(1) Chern–Simons gauge theory at level
k = Bθ . As a consequence, he found a relation

ρ = 1

2πθ
(2)

which links the non-commutative parameter θ to the density of electrons ρ. By using the
definition of the filling factor

ν = 2πρ

B
(3)

in the system of units (h̄, e, c), it is easily seen that the fraction ν can be written in terms of
the parameter θ as

ν = 1

Bθ
. (4)

This beautiful relation is one of the interesting results obtained recently by Susskind in dealing
with the FQH fluids.

Moreover, by exploring the possibility of developing a consistent finite matrix model for
the description of the FQH droplet, Polychronakos [14] suggested to include a new field into
the Susskind model. The proposed action is given by

S =
∫

dt
B

2
Tr

{
εab(Ẋa + i[A0, Xa])Xb + 2θA0 − ωX2

a

}
+ ψ †(iψ̇ − A0ψ) (5)

where Xa, a = 1, 2 are N × N matrices and ψ is a complex N-vector, and ε12 = −ε21 = 1,
εaa = 0. The action is invariant under the gauge group U(N) and the matrix model variables
transform as

Xa → UXaU
−1 ψ → Uψ. (6)

The equation of motion for A0 leads to the Gauss law constraint

G ≡ −iB[X1, X2] + ψψ † − Bθ = 0. (7)

The trace of this equation gives

ψ †ψ = NBθ. (8)
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Upon quantization, the matrix elements of Xa and the components of ψ become operators,
obeying the commutation relations[

ψi, ψ
†
j

] = δij [(X1)ij , (X2)kl] = i

B
δilδjk. (9)

The Hamiltonian can be obtained from (5) as

H = ω

(
N2

2
+

∑
A†

nmAmn

)
(10)

where the N × N matrix of harmonic-oscillator operators is defined by

Anm =
√

B

2
(X1 + iX2)nm. (11)

The corresponding wavefunction is [16]

|k〉 = [
εi1...iN ψ

†
i1
(ψ †A†)i2 · · · (ψ †A†N−1)iN

]k|0〉 (12)

where the vacuum |0〉 is annihilated by A and ψ and ε is the fully antisymmetric tensor. This
is a physical state and therefore satisfies the relation

G|k〉 = 0. (13)

It is similar to the Laughlin wavefunction [1] at the filling factor

ν = 1

k + 1
. (14)

Subsequently, one of us and others [22, 23] generalized the above results to any filling
factor which can be expressed as

νk1k2 = 1

k1
+

1

k2
(15)

and in particular to level two of the Haldane hierarchy [21]

νp1p2 = p2

p1p2 − 1
(16)

by setting

k1 = p1 k2 = p1(p1p2 − 1) (17)

where p1 is an odd and p2 is an even integer.

3. Two coupling matrices model

We consider two systems with a total number of particles M1 + M2 which interact with each
other. Such systems can be seen like two coupling layers i containing Mi particles. The
appropriate action to describe the FQH fluids of the whole system at filling factor (1) is given
by

S =
∫

dt
∑

j

Kjj

2θ
Tr

{
εab

(
Ẋ(j)

a + i
[
A0, X

(j)
a

])
X

(j)

b + 2θA0 − ωj

(
X(j)

a

)2}
+ ψ(j)†(iψ̇(j) − A0ψ

(j)) +
∫

dtK12

{ω12

θ
Tr

(
X(1)

a X(2)
a

)
+ ψ(1)ψ(2)

}
(18)

which involves two copies of the single-layer action (5) forming the free part. It also contains
an interacting part, where the scalar K12 plays the role of a coupling parameter between the
layers 1 and 2. The ratio Kjj

θ
is basically the magnetic field B.
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It is clear that for K12 = 0, the total system becomes decoupling. Note that as far as the
total action is concerned, the full gauge symmetry is U(M1) × U(M2). The matrix model
variables transform under this invariance as

X(i)
a → UX(i)

a U−1 ψ(i) → Uψ(i). (19)

Compared to the original matrix model, there is the potential term

V =
∑

j

Kjj

2θ
ωj Tr

(
X(j)

a

)2 − K12

θ
ω12 Tr

(
X(1)

a X(2)
a

)
(20)

analogous to the potential of two coupled harmonic oscillators [25] in the two-dimensional
space. This provides a Hamiltonian for the theory.

The Gauss law constraint can be obtained by evaluating the equation of motion for A0.
In our case it reads

G ≡ −iK11
[
X

(1)
1 , X

(1)
2

] − iK22
[
X

(2)
1 , X

(2)
2

]
+ (ψ(1)ψ(1)† + ψ(2)ψ(2)† − K11 − K22) = 0 (21)

where its trace gives

ψ(1)†ψ(1) + ψ(2)†ψ(2) = M1K11 + M2K22. (22)

Other equations of motion can also be calculated. For the X we get

K11ε
abẊ(1)

a + K11ω1X
(1)
a + K12ω12X

(2)
a = 0

(23)
K22ε

abẊ(2)
a + K22ω2X

(2)
a + K12ω12X

(1)
a = 0

while for the ψ we obtain

iψ(1)† + K12ψ
(2) = 0 iψ(2)† + K12ψ

(1) = 0. (24)

Of course the last set of equations shows a difference with respect to the decoupled case. It
can be solved by using a unitary transformation.

4. Hamiltonian formalism

Let us now consider the proposed model quantum mechanically. We proceed by determining
the total Hamiltonian, which describes the system under consideration. It can be obtained
from the relation

H = Ẋ
∂L

∂Ẋ
− L (25)

where ∂L

∂Ẋ
defines the conjugate momentum. This leads to a Hamiltonian as the sum of the

free and the interacting parts as

H =
∑

j

Kjj

2θ
ωj Tr

(
X(j)

a

)2 − K12

θ
ω12 Tr

(
X(1)

a X(2)
a

)
(26)

which is nothing but the confining potential (20). This means that the kinetic energy is
negligible compared to V .

It is clear that this form of H cannot be diagonalized directly. Nevertheless, H can be
transformed to another factorizing Hamiltonian H′. Probably the best way to do this is to
perform a rotation by a mixing angle ϕ of the X to new matrices

Y (1)
a = X(1)

a cos
ϕ

2
− X(2)

a sin
ϕ

2
Y (2)

a = X(1)
a sin

ϕ

2
+ X(2)

a cos
ϕ

2
. (27)
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It can easily be checked that this rotation is a unitary transformation. Inserting (27) into (26),
one can show that H transform to

H′ = α Tr
(
Y (1)

a

)2
+ β Tr

(
Y (2)

a

)2
(28)

if the rotating angle satisfies the relation

tan ϕ = K12ω12

K11ω1 − K22ω2
. (29)

The parameters α and β are given by

α = 1

θ

(
K11ω1 cos2 ϕ

2
+ K22ω2 sin2 ϕ

2
− 1

2
K12ω12 sin ϕ

)
(30)

β = 1

θ

(
K11ω1 sin2 ϕ

2
+ K22ω2 cos2 ϕ

2
+

1

2
K12ω12 sin ϕ

)
.

To diagonalize H′, we define two couples of creation and annihilation matrices of
harmonic-oscillator operators

C(1)
nm =

√
α

2

(
Y

(1)
1 + iY (1)

2

)
nm

C(2)
nm =

√
β

2

(
Y

(2)
1 + iY (2)

2

)
nm

. (31)

They satisfy the commutation relations[
C(1)

nm, C
(1)†
n′m′

] = δnm′δn′m
[
C

(2)
ij , C

(2)†
i ′j ′

] = δij ′δi ′j (32)

while all other commutators vanish. Now H′ can be rewritten as

H′ = α

2

(
2M1 + M2

1

)
+

β

2

(
2M2 + M2

2

)
(33)

where the number operators

M1 =
M1∑

n,m=1

C(1)†
mn C(1)

nm M2 =
M2∑

i,j=1

C
(2)†
ij C

(2)
j i (34)

are counting the M1 and M2 particles. Thus under the unitary transformation the system
becomes decoupling.

5. Ground-state wavefunctions

To begin we emphasize a difference between the ground state of two coupled harmonic
oscillators in terms of the coordinates xi and that in terms of their mapped representations yi .
The wavefunction

ψ0(�y) ∼ exp
{−αy2

1 − βy2
2

}
(35)

is separable in the variables y1 and y2. However, for the variables x1 and x2, the wavefunction
(35) reads

ψ0(�x) ∼ exp

{
−α

(
x1 cos

ϕ

2
− x2 sin

ϕ

2

)2
− β

(
x1 sin

ϕ

2
+ x2 cos

ϕ

2

)2
}

. (36)

Next, we will see how these ground states can be extended to the matrix model formalism.
We begin to determine that for the matrices Y. By transforming the Gauss law constraint to
the variables Y, i.e.(
K11 cos2 ϕ

2
+ K22 sin2 ϕ

2

) [
Y

(1)
1 , Y

(1)
2

]
+

(
K11 sin2 ϕ

2
+ K22 cos2 ϕ

2

) [
Y

(2)
1 , Y

(2)
2

]
+

1

2
(K11 − K22) sin ϕ

{[
Y

(1)
1 , Y

(2)
2

]
+

[
Y

(2)
1 , Y

(1)
2

]}
= i θ(K11 + K22 − φ(1)φ(1)† − φ(2)φ(2)†) (37)
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where the Polychronakos fields are also rotated to new fields

φ(1) = ψ(1) cos
ϕ

2
− ψ(2) sin

ϕ

2
φ(2) = ψ(1) sin

ϕ

2
+ ψ(2) cos

ϕ

2
. (38)

For simplicity let us fix K11 = K22 = K , then (37) becomes[
Y

(1)
1 , Y

(1)
2

]
+

[
Y

(2)
1 , Y

(2)
2

] = 2 iKθ

(
1 − 1

2K
φ(1)φ(1)† − 1

2K
φ(2)φ(2)†

)
. (39)

Now it is clear that the ground state is simply a tensor product between those states
corresponding to each layer

|K〉 = [
εi1···iM1 φ

(1)†
i1

(φ†(1)C(1)†)i2 · · · (φ(1)†C(1)†M1−1)iM1

]K

[
εj1···jM2 φ

(2)†
j1

(φ(2)†C(2)†)j2 · · · (φ(2)†C(2)†M2−1)jM2

]K |0〉. (40)

The ground state (40) can be mapped in terms of the operators of the matrices X by
expressing the matrices C of harmonic-oscillator operators in terms of those corresponding to
the matrices X. Using (27), one can show that (31) takes the form

C(1)
nm =

√
α

B

(
A(1) cos

ϕ

2
− A(2) sin

ϕ

2

)
nm

C(2)
nm =

√
β

B

(
A(1) sin

ϕ

2
+ A(2) cos

ϕ

2

)
nm

(41)

where the operators

A(1)
nm =

√
B

2

(
X

(1)
1 + iX(1)

2

)
nm

A(2)
nm =

√
B

2

(
X

(2)
1 + iX(2)

2

)
nm

(42)

commute: [
A(1)

nm,A
(1)†
n′m′

] = δnm′δn′m
[
A

(2)
ij , A

(2)†
i ′j ′

] = δij ′δi ′j . (43)

Inserting (38) and (41) in (40), we obtain

|K〉 =
[
εi1...iM1

(
ψ(1)† cos

ϕ

2
− ψ(2)† sin

ϕ

2

)
i1

· · ·

×
{(

ψ(1)† cos
ϕ

2
− ψ(2)† sin

ϕ

2

)(
A(1)† cos

ϕ

2
− A(2)† sin

ϕ

2

)M1−1
}

iM1

]K

[
εj1...jM2

(
ψ(1)† sin

ϕ

2
+ ψ(2)† cos

ϕ

2

)
j1

· · ·

×
{(

ψ(1)† sin
ϕ

2
+ ψ(2)† cos

ϕ

2

)(
A(1)† sin

ϕ

2
+ A(2)† cos

ϕ

2

)M2−1
}

jM2

]K

|0〉.

(44)

In what follows, we proceed without the use of the unitary transformation to construct the
wavefunction |�〉 describing the system of M1 + M2 electrons at filling factor (1). One has to
realize a physical state |�〉 that satisfies the Gauss law constraint (21)

G|�〉 = 0 (45)

and allows us to establish a link with two well-known wavefunctions. May be the best way to
do this is to define two operators

A = A(1) ⊗ A(2) ψ = ψ(1) ⊗ ψ(2) (46)
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where ⊗ is the tensor product. Using these matrices of harmonic-oscillator operators, we
build a vacuum configuration

|�〉 = [
εi1···iM1 ψ

†(1)

i1
(ψ(1)†A(1)†)i2 · · · (ψ(1)†A(1)†M1−1)iM1

]K11−K12

[
εj1···jM2 ψ

(2)†
j1

(ψ(2)†A(2)†)j2 · · · (ψ(2)†A(2)†M2−1)jM2

]K22−K12

[
εk1···kM1+M2 ψ

†
k1

(ψ †A†)k2 · · · (ψ †A†M1+M2−1)kM1+M2

]K12 |0〉. (47)

which satisfies the Gauss law constraint (21) and therefore we have

(ψ(1)ψ(1)† + ψ(2)ψ(2)† − M1K11 − M2K22)|�〉 = 0. (48)

Novel about this vacuum configuration is that one can interpret the term[
εk1···kM1+M2 ψ

†
k1

(ψ †A†)k2 · · · (ψ †A†M1+M2−1)kM1+M2

]K12 (49)

as an inter-layer correlation. In conclusion, our configuration could well be a good ansatz for
the ground states of double-layered FQH fluids in the formalism of the NCCS matrix model.
This will be clarified in the next section.

6. Link with literature

Here we show how the Yoshioka–MacDonald–Girvin and Halperin wavefunctions describing
respectively the double-layer and the unpolarized QH systems can be recovered from our
vacuum configuration (47).

Before starting, we note that for any N-dimensional vector ψ † and N × N matrix A†, the
expression of the form

F(ψ †, A†) = εi1···iN ψ
†(1)

i1
(ψ(1)†A(1)†)i2 · · · (ψ(1)†A(1)†N−1)iN (50)

has a one-to-one correspondence with the polynomial

f (z) = εi1···iN z0
i1

· · · zN−1
iN

. (51)

Now our task can be done by defining a new complex variable

ζi =
{

z
(1)
i for i = 1, . . . , N

z
(2)
i−N for i = N + 1, . . . , 2N

(52)

assuming that the particle numbers are equal, M1 = M2 = N , and recalling the Vandermonde
determinant ∏

i<j

(zi − zj ) = det
(
z
N−j

i

) = εi1···iN z0
i1

· · · zN−1
iN

. (53)

In terms of the complex coordinates, (47) reads

�(K11,K22,K12) = [
εi1···iN (

z
(1)
i1

)0 · · · (z(1)
iN

)N−1]K11−K12

[
εj1···jN

(
z
(2)
j1

)0 · · · (z(2)
jN

)N−1]K22−K12

[
εk1···k2N ζ 0

k1
· · · ζ 2N−1

k2N

]K12
�0. (54)

It can be written in standard form as

�(K11,K22,K12) =
∏
i<j

(
z
(1)
i − z

(1)
j

)K11
∏
i<j

(
z
(2)
i − z

(2)
j

)K22
∏
i,j

(
z
(1)
i − z

(2)
j

)K12
�0 (55)
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and now the inter-layer correlation is∏
i,j

(
z
(1)
i − z

(2)
j

)K12
. (56)

Next, we will give two different applications of (55).

6.1. YMG wavefunctions

Considering the two layers and treating them as additional degrees of freedom, the ν = 1
2

state was predicted by Yoshioka et al [4]. They made a straightforward generalization of the
Laughlin wavefunctions to those with the filling factor

ν = 2

m + n
(57)

where m and n are integers. This can be obtained from our analysis by taking

K =
(

m n
n m

)
q = (1 − 1) (58)

leading to the wavefunction

�(m,m,n) =
∏
i<j

(
z
(1)
i − z

(1)
j

)m
∏
i<j

(
z
(2)
i − z

(2)
j

)m
∏
i,j

(
z
(1)
i − z

(2)
j

)n
�0. (59)

Choosing m = 3 and n = 1, we recover the FQHE ν = 1
2 state corresponding to

�(3,3,1) =
∏
i<j

(
z
(1)
i − z

(1)
j

)3 ∏
i<j

(
z
(2)
i − z

(2)
j

)3 ∏
i,j

(
z
(1)
i − z

(2)
j

)
�0. (60)

6.2. Halperin wavefunctions

Another interesting result can be obtained. In the Halperin picture [3] in the context of single-
layered unpolarized QH systems, the labels 1 and 2 can be considered as an analogue of spin.
Following this idea, our bilayered system can be seen as mixing layers of particles with spin
up and spin down.

As a consequence, we obtain for m = 3 and n = 2 the unpolarized Halperin wavefunction
with the filling factor 2

5 as

�(3,3,2) =
∏
i<j

(
z
(1)
i − z

(1)
j

)3 ∏
i<j

(
z
(2)
i − z

(2)
j

)3 ∏
i,j

(
z
(1)
i − z

(2)
j

)2
�0. (61)

This can be seen as a wavefunction of a system of N particles with spin parallel and another
N particles with spin antiparallel to the external magnetic field.

7. Conclusion

We have developed a matrix model to describe bilayered QH systems at the filling factor
ν = qiK

−1
ij qj . The basic idea was to use two coupled harmonic oscillators in a similar fashion

as done by Susskind and Polychronakos. Our model is a generalization of their model and of
course reproduces its basic features by taking the coupling parameter K12 to be zero.

Starting from an appropriate action we derived the equations of motion for the different
matrix model variables. The corresponding Hamiltonian was obtained as the sum of free and
interacting terms. A unitary transformation, more precisely a rotation around an angle ϕ, led
to a factorizing Hamiltonian.
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Next, we have constructed the ground states of the system in two different ways. The
first was based on the unitary transformation and from the ground state after rotation we have
derived that before rotating the system. The second was performed directly in terms of a
combination of the matrices of harmonic-oscillator operators of two layers. The obtained
vacuum configuration involved three different quantities where one describes the inter-layer
interaction.

Subsequently, we have investigated the link between our second wavefunction and two
others from the literature. After projecting the vacuum configuration on the complex plane and
using the Vandermonde determinant, we have shown how the Yoshioka–MacDonald–Girvin
wavefunction with the filling factor ν = 2

m+n
can be obtained from our model, in particular

that corresponding to the ν = 1
2 state. Likewise, we have recovered the unpolarized Halperin

wavefunction, especially that for the ν = 2
5 state.

The case we have studied is in fact just a particular case of more general FQH states where
the fluid droplet is assumed to consist of several coupled branches, say M branches. M = 1 is
the Laughlin (Susskind–Polychronakos) model, M = 2 is the model we have discussed here
and M � 3 is the generic case, which can be seen as a straightforward generalization of our
case.

Of course some important questions still remain to be answered, e.g. about the fractional
charge and statistics of the particles and how to describe them in terms of the proposed
model. Another interesting question is related to the link between our model and Calogero
and super-Calogero models. We will return to these issues and related matter in future.

We close this section by noting that our model will be investigated in the forthcoming
work [26] for the case of a single layer. Basically, we will consider the Laughlin liquids in a
confining potential that is not of parabolic type and see how this affects the basic features of
the Susskind–Polychronakos model.
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